A determination of the global cloud
feedback from climate variations
over the last decade
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in today’s atmosphere, clouds
reduce net energy in to the Earth
by 20 W/m? (also known as cloud
radiative forcing)

how will this change in a future
climate?

if changing clouds further reduce
TOA downward net flux, this is a
negative feedback

if changing clouds increase TOA
downward net flux, this is a
positive feedback
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Regress energy trapped by clouds
vs. surface temperature

AR(clouds)
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ARall—sky = AR +ARq +ARalbedo +ARcloud
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1. Extract the change that 1s due just to clouds, ARcioud
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to determine ARcoud

® start with cloud radiative forcing (ACRF);
change in TOA flux if clouds are removed

o ACRF - (ARcIear-sky - ARaII-sky)

® ACREF can also be affected by changes in T,
g, albedo, radiative forcing

® Soden et al. [2008] adjustment to get
ARcioud from ACRF,; see also Shell et al. [2008]

ARcloud — ACRF T (K()T T KI)({T + (K()H"" _ KH/:)({W
-+ (K”u — K )da + (G — G).
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cloud radiative forcing

cloud clear - sky
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cloud radiative forcing

cloud clear -sky
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cloud = (IARc'Imr-xk_\' - ARall—sky) + (K( )'1‘ — Kp)dT + (K( )w — Ky)dW

+ (K", — K )da + (G" — G).
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=0.46+0.75(20) W/m2/K (MERRA)

Fit needed to stabilize climate
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Acioud = 0.54+0.72(20) W/m?/K (ECMWF); r’=1.9%
=0.46+0.75(20) W/m2/K (MERRA); 12=1.3%
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e The cloud feedback 1s likely positive,
although we cannot rule out a small
negative feedback

* There 1s no evidence to support the
existence a big negative cloud feedback
(viz. Spencer, Lindzen and Choi)

e T, explains little of the variance of ARcoud

— 1t will take many years to significantly reduce the
uncertainty
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Do models get this right?

* Apply the same analysis to climate
models

e Control runs
e Obtained from the PCMDI AR/4 archive
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short-term cloud feedback intercomparison
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LW component of
DRy /T, (W/m /K)
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Conclusions

The global cloud feedback in response to
short-term climate variations in the last 10 years has
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No evidence of large stabilizing cloud feedback
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for short-term fluctuations
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| thank NASA grant NNXO08AR27G to TAMU, the CERES,
MERRA, and ECMWEF groups, and the PCMDI archive



ECM
WF-i
3 F-interi
/2000-2/21(1)t16(1;1m reanaly

S1S

1.0 -

=
Ul
I

O
o
I

----------
d
-----

-------
et

------------

AR
q (W/m2/K)

1

o

o
|

---------------------

----------------------
.....
-------------
o

-----
<

.

---------

o

.
--------

-------

(1.6
4-2.18) W/m?2
/K

o*
-------------

.
.

-----------------

1.0
[
-0
4 |
0.2 I
Te
TrOmPeratUreO-(O I
plcal anK) 0.2
T



Aerosols

aerosol climatology
\ aerosols

\

AR - (ARF/('UI‘—.\/\"\' - ARHII—.\L‘_\’) + (K“T o K/)(,T + (K“H' o KH")(I ‘/‘/

('/UU([

+ (K", — K,)da + (G" — G).

* difference goes into this term
*as long as it does not correlate w/ AT,
inferred feedback should not be affected
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Long-term cloud Climate

Model Total Long wave Short wave feedback sensitivity
Cloud feedback N2 Cloud feedback N2 Cloud feedback 2
FGOALS-g1.0 1.24+0.16 28% 0.92+0.08 48% 0.32+0.15 3% N/A 2.3
PCM 1.11+0.20 10% 0.52+0.11 7% 0.60+0.21 3% 0.18 2.1
IPSL-CM4 1.05+0.16 12% 1.17+0.13 21% -0.12+0.14 0.2% 1.06 4.4
INM-CM3.0 0.98+0.18 9% 0.77+0.10 15% 0.21+0.19 0.4% 0.35 2.1
UKMO-HadCM3 0.88+0.31 5% 0.57+0.15 9% 0.31+0.35 0.5% 1.08 3.3
ECHAM/MPI-OM 0.74+0.20 4% 0.97+0.09 27% -0.23+0.20 0.4% 1.18 3.4
CCSM3 0.62+0.26 2% 0.17+0.12 0.9% 0.45+0.25 1% 0.14 2.7
GFDL-CM2.1 0.34+0.20 0.9% 0.40+0.08 8% -0.06+0.23 0% 0.81 3.4
GFDL-CM2.0 0.15+0.20 0.2% -0.63+0.10 11% 0.78+0.21 4% 0.67 2.9
ECMWF-CERES 0.54+0.72 1.9% 0.43+0.45 3.0% 0.12+0.78 0.1% N/A N/A
MERRA-CERES 0.46+0.75 1.3% 0.27+0.47 1.2% 0.19+0.76 0.2% N/A N/A
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Have we measured a
feedback!?

It makes sense if one thinks of cause and
effect

This is how feedbacks are traditionally
defined

The comparison with models is apples-to-
apples
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Figure 1. Scatterplot of 134,862 measured values of OLR
against OLR calculated by the Fu-Liou model, both in units
of W/m~. The solid line is the one-to-one line.
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